Comparing the effectiveness of different displays in enhancing illusions of self-movement (vection)
نویسندگان
چکیده
Illusions of self-movement (vection) can be used in virtual reality (VR) and other applications to give users the embodied sensation that they are moving when physical movement is unfeasible or too costly. Whereas a large body of vection literature studied how various parameters of the presented visual stimulus affect vection, little is known how different display types might affect vection. As a step toward addressing this gap, we conducted three experiments to compare vection and usability parameters between commonly used VR displays, ranging from stereoscopic projection and 3D TV to high-end head-mounted display (HMD, NVIS SX111) and recent low-cost HMD (Oculus Rift). The last experiment also compared these two HMDs in their native full field of view (FOV) and a reduced, matched FOV of 72° × 45°. Participants moved along linear and curvilinear paths in the virtual environment, reported vection onset time, and rated vection intensity at the end of each trial. In addition, user ratings on immersion, motion sickness, vection, and overall preference were recorded retrospectively and compared between displays. Unexpectedly, there were no significant effects of display on vection measures. Reducing the FOV for the HMDs (from full to 72° × 45°) decreased vection onset latencies, but did not affect vection intensity. As predicted, curvilinear paths yielded earlier and more intense vection. Although vection has often been proposed to predict or even cause motion sickness, we observed no correlation for any of the displays studied. In conclusion, perceived self-motion and other user experience measures proved surprisingly tolerant toward changes in display type as long as the FOV was roughly matched. This suggests that display choice for vection research and VR applications can be largely based on other considerations as long as the provided FOV is sufficiently large.
منابع مشابه
Simulated angular head oscillation enhances vection in depth.
Research has shown that adding simulated linear head oscillation to radial optic flow displays enhances the illusion of self-motion in depth (ie linear vection). We examined whether this oscillation advantage for vection was due to either the added motion parallax or retinal slip generated by insufficient compensatory eye movement during display oscillation. We constructed radial flow displays ...
متن کاملConsistent stereoscopic information increases the perceived speed of vection in depth.
Previous research found that adding stereoscopic information to radially expanding optic flow decreased vection onsets and increased vection durations (Palmisano, 1996 Perception & Psychophysics 58 1168-1176). In the current experiments, stereoscopic cues were also found to increase perceptions of vection speed and self-displacement during vection in depth--but only when these cues were consist...
متن کاملEnhancing the Visually Induced Self-Motion Illusion (Vection) under Natural Viewing Conditions in Virtual Reality
The visually induced illusion of ego-motion (vection) is known to be facilitated by both static fixation points [1] and foreground stimuli that are perceived to be stationary in front of a moving background stimulus [2]. In this study, we found that hardly noticeable marks in the periphery of a projection screen can have similar vection-enhancing effects, even without fixating or suppressing th...
متن کاملRelative Visual Oscillation Can Facilitate Visually Induced Self-Motion Perception
Adding simulated viewpoint jitter or oscillation to displays enhances visually induced illusions of self-motion (vection). The cause of this enhancement is yet to be fully understood. Here, we conducted psychophysical experiments to investigate the effects of different types of simulated oscillation on vertical vection. Observers viewed horizontally oscillating and nonoscillating optic flow fie...
متن کاملEccentric gaze dynamics enhance vection in depth.
This study examined the role of eccentric gaze dynamics in the generation of visual illusions of self-motion (i.e., vection). In Experiment 1, observers maintained their gaze either upward, downward, leftward, or rightward with respect to the center of a radially expanding optic flow pattern, which simulated forward self-motion in depth through a 3D cloud of objects. Real-time vection strength ...
متن کامل